Is Pure V₉O₁₇ Unstable at 1268 K? ## S. BERGLUND* Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm. Sweden Vasil'eva et al. obtained high quality free energy of formation data for the $3 \le n \le 9$ members of the V_nO_{2n-1} series by an e.m.f. technique. The authors were unable to make a positive identification of V₉O₁₇ by X-ray diffraction but reported indirect evidence for its thermodynamic stability. While their experimental results do indeed show very good agreement with this hypothesis, the stated experimental errors do not exclude the opposite interpretation. Lower members of the series have been prepared from VO₂ at about 1270 K by the double buffer technique, which permits precise oxygen activity control. There was good agreement with the data of Vasil'eva et al. The results and the technique, with full experimental details, are being described elsewhere.2 In the present work, VO₂ was reduced by means of CO + CO₂ gaseous buffers using the same technique, with Ni + NiO as the solid buffer. The products were examined by X-ray powder diffraction (Guinier-Hägg method). The experimental conditions and the results have been summarized in Table 1. X-Ray diffraction work by Nagasawa³ revealed V₉O₁₇ growing in a topotactic relationship with V₈O₁₅, while, in a high resolution electron microscopy study, 4 Gannon and Tilley found V₉O₁₇ primarily as microdomains coexisting with similar V_8O_{15} domains in a VO_2 parent phase. In both cases, the preparations were carried out at constant stoichiometry rather than at a controlled oxygen Table 1. Reduction of VO_2 with $CO + CO_2$ buffers. activity, while some of the samples examined by Gannon and Tilley were clearly not in internal equilibrium. The present observations, however, prove V₈O₁₅ to be the principal reaction product at 1268-9 K even under near-equilibrium conditions that would be expected to produce single phase V_9O_{17} or higher V_nO_{2n-1} series members. V_9O_{17} , on the other hand, was only found in the form of a few diffraction lines in a powder pattern from a sample that consisted mostly of V₈O₁₅. The existence of V_oO₁₇ as a separate phase at this temperature is thus in some doubt. - 1. Vasil'eva, I. A., Sukhushina, I. S. and Balabaeva, R. F. J. Chem. Thermodyn. 7 (1975) 319. - 2. Berglund, S. Chem. Scr. In press. - 3. Nagasawa, K. Mater. Res. Bull. 6 (1971) 853. - 4. Gannon, J.R. and Tilley, R.J.D. J. Solid State Chem. 25 (1978) 301. Received October 6, 1980. $-\log p_{O_2}$ Reaction Diffraction Phases expected $(p_{O_2} \text{ in atm})$ K time h patterns found VO_2 or V_nO_{2n-1} (n>9) VO_2 or V_nO_{2n-1} (n>9) VO_2 or V_nO_{2n-1} (n>9)6.70 1269 48 VO_2 $VO_{2}^{2}(+V_{8}O_{15})$ $V_{8}O_{15}(+VO_{2}+V_{9}O_{17})$ 6.94 1268 48 7.12 1268 48 7.19 1269 66 V_8O_{15} $V_9\tilde{O}_{17}$ ^{*}Present address: National Defence Research Institute/FOA 2 Section 241, S-104 50 Stockholm, Sweden.